Pharmacokinetics, Pharmacodynamics, and Safety of FLX475, an Orally-Available, Potent, and Selective Small-Molecule Antagonist of CCR4, in Healthy Volunteers

Sjoerd van Marle, MD¹, Ewoud-Jan van Hoogdalem, PhD, RPh¹, Daniel Johnson², Abood Okal, PhD², Paul D. Kassner, PhD², David J. Wustrow, PhD², Steven A. Smith⁷, and William Ho, MD, PhD²

SITC 2018 Abstract P484

¹PRA Health Sciences, Groningen, Netherlands; ²FLX Bio, Inc., South San Francisco, CA

Abstract

Regulatory T cells (Treg) are essential for immune tolerance to self antigens, but can also dampen anti-tumor immune responses in the tumor microenvironment (TME). The predominant chemokine receptor on human T_{reg} is CCR4, the receptor for the chemokines CCL17 and CCL22, which are produced by tumor cells, tumor-associated macrophages and dendritic cells, as well as by effector T cells (T $_{\rm eff})$ in the setting of an inflammatory anti-tumor response.¹ Preclinical studies with orally-available CCR4

antagonists have demonstrated potent inhibition of T_{reg} migration into tumors, an increase in the intratumoral $T_{\text{eff}}/T_{\text{reg}}$ ratio, and anti-tumor efficacy as a single agent and in combination with checkpoint inhibitors.²

A first-in-human, randomized, double-blind, placebo-controlled trial was conducted to examine the safety, pharmacokinetics (PK), and pharmacodynamics (PD) in healthy volunteers (HVs) of single and repeat dosing of FLX475, an orally-available, potent, and selective small-molecule antagonist of CCR4. Seven cohorts of 8 subjects each (6 drug, 2 placebo) were administered single doses ranging from 5 mg to 1000 mg. Six cohorts were administered daily doses of FLX475 for 14 days ranging from 25 mg to 150 mg, including two cohorts evaluating a loading dose administered on Day 1.

FLX475 was well-tolerated, with no significant laboratory abnormalities or dose-limiting clinical adverse events. Dose-dependent increases in exposure were observed with low peak-to-trough ratios and a half-life of approximately 72 hours. Daily dosing without a loading dose demonstrated approximately 4-5x accumulation of FLX475 over 14 days. A receptor occupancy (RO) PD assay using study subject peripheral blood T_{rec} demonstrated a tight PK/PD relationship, suggesting that doses of approximately 75 mg PO QD and above are sufficient to maintain target drug exposure above the IC₉₀ for human in vitro T_{reg} migration.

In this first-in-human HV study, the oral CCR4 antagonist FLX475 was demonstrated to be well tolerated with outstanding PK properties. A robust PD assay measuring receptor occupancy on circulating T_{rea} demonstrated the ability to safely achieve exposure levels predicted to maximally inhibit Trea recruitment into tumors via CCR4 signaling.³ These data have enabled the optimized design of an ongoing Phase 1/2 study of FLX475 both as monotherapy and in combination with checkpoint inhibitor in cancer patients

Background

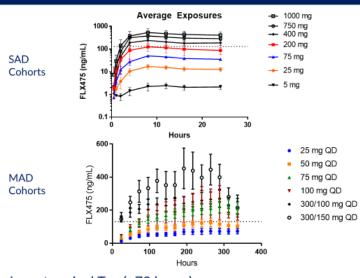
FLX475: Designed to Enhance the Anti-Tumor Immune Response

T_{reg}-Suppressed Tumor Microenvironment Tumo

Tree-Excluded Tumor

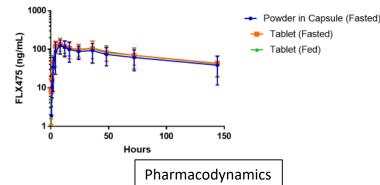
Microenvironment

- Immune cells follow chemokines to migrate into target tissues CCR4 is a chemokine receptor expressed on T_{reg}
- In response to inflammation tumor cells and other cells in the TME highly express the chemokines CCL17 and CCL22 (ligands for CCR4), inducing the nigration of T_{reg} into tumors
- can suppress the anti-tumor activity of effector T cells
- FLX475 is a potent, orally available, small molecule antagonist of CCR4 that fically blocks the recruitment
 - Shifting the T_{eff}/T_{reg} balance in favor

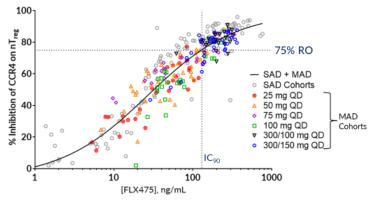

Subject Demographics Weight in kg (mean) Height in cm (mean) 57.3-74.2 157-191 (65.3) (172) 18-41 (26.3)

		(28)	(68.1)	(169)	(23.8)			(26.2)	(66.6)	(170)	L
25 mg (#6)	1/5	18-27 (21)	59.6-68.5 (65.8)	171-184 (176.7)	19.8-23.4 (21.1)	50 mg (#6)	2/4	19-48 (28)	56.6-81.8 (69.6)	167-187 (174.5)	[
75 mg (#6)	0/6	21-36 (25)	57.7-71.6 (65.6)	160-173 (166.2)	21.2-26.3 (23.7)	75 mg (#6)	2/4	19-53 (30.3)	55-80.2 (65.8)	158-181 (166.8)	Γ
200 mg (#6)	3/3	27-55 (46.8)	51.9-99 (80.8)	153-195 (177)	22.2-29.7 (25.5)	100 mg (#6)	2/4	21-30 (26.5)	70.3-89.9 (76.1)	170-188 (177)	
400 mg (#6)	1/5	20-49 (27.3)	56.3-73.7 (66.2)	160-172 (164.2)	21.9-29.7 (24.5)	300/100 mg (#6)	1/5	18-38 (26.2)	51.2-90.9 (71.6)	161-189 (172.7)	
750 mg (#6)	4/2	19-54 (27.7)	65-86.8 (75.7)	167-197 (180.8)	20.4-25.7 (23.2)	300/150 mg (#6)	1/5	18-40 (27.3)	55.9-83.8 (66.5)	160-187 (171.3)	
1000 mg (#6)	1/5	19-55 (36.2)	54.7-90.5 (68.2)	157-177 (165.8)	19.4-29.7 (24.6)	Total	14/34	18-53 (27.1)	51.2-99.1 (68.4)	157-191 (172.0)	Γ
Total	15/41	18-55 32.5	51.9-99.0 (71.1)	153-197 (171.1)	19.4-29.7 (24.3)						

Results

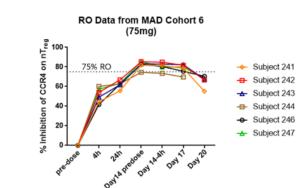

Pharmacokinetics

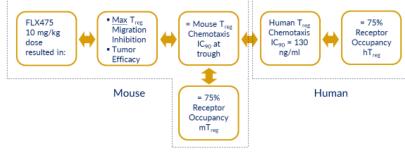
Mean Exposures by SAD/MAD Cohort



- Long terminal T_{1/2} (~72 hours)
- ~4-fold accumulation over 14 days of dosing

Capsule and Tablet Formulations Have Similar Bioavailability and No Effect of High-Fat Meal




All PD (RO) timepoints plotted for all HV subjects

- RO = reduced signal of binding/internalization of fluorescently-labeled CCL22 using flow-based assay when FLX475 is bound to CCR4 on circulating T_{reg}
- 75% receptor occupancy correlates with IC₉₀ in a chemotaxis assay in 100% human serum

75 mg PO QD Dosing Achieves Target Receptor Occupancy (RO) at Steady State in All Subjects

Foundation for Target PK and PD in Humans: Efficacy is Linked to Exposure

- IC₉₀ at trough = 75% Receptor Occupancy (RO) in mice which achieved maximal inhibition of Treg migration and anti-tumor efficacy
- In healthy volunteers, IC₉₀ at trough = 130 ng/ml, which was achieved with 75 mg PO QD dosing

Safety

Grades 1 & 2 SAD Adverse Events in >5

AE	Placebo (#14)	5 mg	25 mg	75 mg	200 mg	400 mg
Headache	14% (21%)/0	33%/17%	0/0	0/0	17%/33% (17%)	17%/17%
Abdominal pain	0/0	0/0	0/0	0/0	17%/0	33%/0
Cannula Pain/ Hematoma	7%/0	17%/0	0/0	17%/0	50%/0	33%/0
Flu-like Sx/URI/ rhinitis/sore throat	21%/0	0/0	0/17%	0/0	17%/33%	0/0
Soft/loose stool	7%/0	17%/0	33%/0	0/0	0/0	0/0
Electrode Irritation	14%/0	17%/0	17%/0	0/0	17%/0	0/0
Fatigue/asthenia	0/0	0/0	0/0	0/0	0/0	0/0
Muscle pain/stiffness	7%/7%	0/0	17%/0	17%/0	17%/0	0/0
Nausea	7%/0	0/0	17%/0	0/0	17% (17%)/0	0/0
Rash/erythema, dry skin	0/0	0/0	0/0	0/0	17%/0	17%/0
Dizziness/ Syncope	7%/0	0/0	0/0	0/0	0/0	0/0
Anorexia	0/0	0/0	0/0	0/0	0/0	0/0

Grades 1 & 2 MAD Adverse Events in >5% of HVs

AE	Placebo (#12)	25 mg	50 mg	75 mg	100 mg	300/100 mg	300/150 mg
Headache	25% (8%)/0	33%/17%	50%/17%	67%/0	33%/0	0/0	83%/0
Fatigue/Asthenia	25%/0	0/0	17%/0	33%/0	67%/0	50%/0	50%/0
Abdominal Discomfort/Pain	8% (<mark>8%</mark>)/0	17%/0	0/0	17% (<mark>17%</mark>)/0	17%/0	50%/0	33%/0
Soft/Loose Stool	8%/0	0/0	17%/0	17% (<mark>17%</mark>)/0	67%/0	17%/0	0/0
Muscle Pain/ Stiffness	0/0	0/0	17%/0	50%/0	0/0	0/0	67%/0
Cannula Irritation/ Hematoma	33%/0	0/0	17%/0	17%/0	33%/0	17%/0	17%/0
Electrode Irritation	17%/0	0/0	17%/0	17%/0	17%/0	33%/0	0/0
Anorexia	8% (<mark>8%</mark>)/0	0/0	0/0	0/0	17%/0	17%/0	0/0
Nausea	8% (<mark>8%</mark>)/0	17%/0	0/0	0/0	33%/0	0/0	17%/0
Flu-like Sx/URI/ Rhinitis	8%/0	0/0	0/0	0/0	0/0	0/0	0/0
Rash/Erythema/ Dry Skin	0/0	17%/0	50%/0	0/0	17%/0	17%/0	17%/0
Dizziness/Syncope	25%/0	17%/0	33%/0	0/0	17%/0	0/0	50%/0

SAD Cohorts MAD Cohorts 5 mg 25 mg x 14d 25 mg 50 mg x 14d 75 mg 75 mg x 14d 200 mg 100 mg x 14d 300 mg Day 1, 100 mg x D2-14 300 mg Day 1, 150 mg x D2-14 1000 ms

Methods

Study Schema

Double-Blind, Placebo Controlled

- 8 healthy volunteers per cohort (2 placebo, 6 FLX475 capsules)
- · Bioavailability of tablet formulation and effect of high-fat meal also tested in 200 mg SAD cohort subjects
- Monitored inpatient through 72 hours post (last) dose and approximately 2 week additional follow up
- Cardiac telemetry for 24-hour period of Day 1 (and Day 14 for MAD) dose
- Triplicate ECGs at other timepoints

Not or Unlikely Related Possibly Related

% of HVs						
750 mg	1000 mg					
50%/0	67%/17%					
0/0	67%/0%					
33%/0	17%/0					
0/0	33%/0					
0/0	33%/0					
17%/0	0/0					
0/0	50%/0					
0/0	0/0					
0/0	0/0					
0/0	0/0					
0/0	0/0					

Safety Findings

- Clinical Adverse Events (AEs)
- Only Grade 1 and Grade 2 clinical AEs reported (see Tables)
- No immune-related AEs observed
- Nearly all designated as not or unlikely related
- Few noted as possibly related
- None noted as likely or definitely related No clinical AEs resulted in dose reductions or missed doses
- Safety Labs and Monitoring

Grade 2

- No significant laboratory changes noted
- No changes in peripheral immune cell populations
- At least 1 subject with Grade 1 QTc prolongation observed in nearly every cohort (including placebo
- No QTc prolongation beyond Grade 1 were observed in MAD subjects through the 300/100 mg dose level
- At the highest MAD cohort dose (300/150 mg), 3 subjects had transient Grade 2 QTo prolongation, correlated with exposures nearly 5x above that needed to achieve IC₉₀ 2 subjects in 300/150 mg cohort met stopping criteria (>60 ms prolongation from baseline) leading to early discontinuation of study treatment (Day 9 and 13), one with

Conclusions

- FLX475 is a highly potent and specific orally-available CCR4 antagonist
- Plasma FLX475 levels increased in a dose-proportional manner, with low peak-to-trough ratios, and a mean $T_{1/2}$ of ~72 hours in healthy volunteers
- Tablet formulation showed similar bioavailability to capsule formulation used in the HV study, with no apparent food effect
- A strong PK/PD correlation was observed between plasma drug levels and CCR4 receptor occupancy, with human T_{reg} chemotaxis IC₉₀ FLX475 plasma levels resulting in 75% CCR4 receptor occupancy on peripheral HV T_{reg}
- 75 mg PO QD achieved drug levels predicted to maximally inhibit in vivo human T_{reg} migration
- Consistent with the mechanism of action of FLX475 which specifically blocks the recruitment of tumor T_{reg} without cellular depletion or nonspecific immune activation, no autoimmunity or immune-related AEs were observed
- No significant clinical AEs or laboratory changes were noted
- No significant QTcF prolongation was observed at exposures ≤3-5X the target drug exposure predicted to maximally inhibit human T_{reg} migration
- These findings have enabled an accelerated Phase 1/2 study in cancer patients testing FLX475 both as monotherapy and in combination with pembrolizumab (NCT03674567)

References

¹Talay O et al. Potent and selective C-C chemokine receptor (CCR4) antagonists potentiate anti-tumor immune responses by inhibiting regulatory T cells (Treg). AACR 2017. ²Talay O et al. Potent and selective C-C chemokine receptor 4 (CCR4) antagonists inhibit regulatory T cell recruitment, increase effector T cell numbers, and potentiate anti-tumor responses in mice. Journal for ImmunoTherapy of Cancer 2017, 5(Suppl 2):P467. ³Okal A, Ho W, Wong B, Kassner P, and Cutler G. Patient selection strategies and pharmacodynamic assays for CCR4 antagonists. Journal for ImmunoTherapy of Cancer 2017, 5(Suppl 2):P44